又爽又黄又无遮掩的免费视频_艳妇乳肉豪妇荡乳_久久久99无码一区_国产一区二区三区导航_女人被男人靠到爽视频

您好,歡迎進(jìn)江蘇雙利合譜科技有限公司網(wǎng)站!
您現(xiàn)在的位置:首頁(yè) >> 解決方案 >> 基于高光譜成像技術(shù)的靜脈識(shí)別測(cè)試試驗(yàn)
基于高光譜成像技術(shù)的靜脈識(shí)別測(cè)試試驗(yàn)
瀏覽次數(shù):575發(fā)布日期:2023-05-12

一、測(cè)試原理及方法:

    高光譜成像技術(shù)是近二十年來(lái)發(fā)展起來(lái)的基于非常多窄波段的影像數(shù)據(jù)技術(shù),其突出的應(yīng)用是遙感探測(cè)領(lǐng)域,并在越來(lái)越多的民用領(lǐng)域有著更大的應(yīng)用前景。它集中了光學(xué)、光電子學(xué)、電子學(xué)、信息處理、計(jì)算機(jī)科學(xué)等領(lǐng)域的先進(jìn)技術(shù),是傳統(tǒng)的二維成像技術(shù)和光譜技術(shù)有機(jī)的結(jié)合在一起的一門(mén)新興技術(shù)。

    高光譜成像技術(shù)的定義是在多光譜成像的基礎(chǔ)上,在從紫外到近紅外(200-2500nm)的光譜范圍內(nèi),利用成像光譜儀,在光譜覆蓋范圍內(nèi)的數(shù)十或數(shù)百條光譜波段對(duì)目標(biāo)物體連續(xù)成像。在獲得物體空間特征成像的同時(shí),也獲得了被測(cè)物體的光譜信息。

目標(biāo)物體-成像物鏡-入射狹縫-準(zhǔn)直透鏡-PGP-聚焦透鏡-CCD棱鏡-光柵-棱鏡:PGP

圖1 成像原理圖

光譜儀的光譜分辨率由狹縫的寬度和光學(xué)光譜儀產(chǎn)生的線性色散確定。最小光譜分辨率是由光學(xué)系統(tǒng)的成像性能確定的(點(diǎn)擴(kuò)展大小)。

    成像過(guò)程為:每次成一條線上的像后(X方向),在檢測(cè)系統(tǒng)輸送帶前進(jìn)的過(guò)程中,排列的探測(cè)器掃出一條帶狀軌跡從而完成縱向掃描(Y方向)。綜合橫縱掃描信息就可以得到樣品的三維高光譜圖像數(shù)據(jù)。

圖2 像立方體

本文以手臂靜脈為研究對(duì)象,利用雙利合譜的高光譜成像儀GaiaSorter(光譜范圍400nm-1000nm)采集測(cè)試對(duì)象的高光譜數(shù)據(jù)。測(cè)試時(shí)間為2015年8月4日。圖3為GaiaSorter “蓋亞”高光譜分選儀的外觀圖像

     

圖3  GaiaSorter “蓋亞”高光譜分選儀

GaiaSorter “蓋亞”高光譜分選儀的核心部件包括均勻光源、光譜相機(jī)、電控移動(dòng)平(或傳送帶)、計(jì)算機(jī)及控制軟件等部分。工作原理是通過(guò)光源照射在放置于電控移動(dòng)平臺(tái)(或傳送帶)上的待測(cè)物體(樣品),樣品的反射光通過(guò)鏡頭被光譜相機(jī)捕獲,得到一維的影像以及光譜信息,隨著電控移動(dòng)平臺(tái)(或傳送帶)帶動(dòng)樣品連續(xù)運(yùn)行,從而能夠得到連續(xù)的一維影像以及實(shí)時(shí)的光譜信息,所有的數(shù)據(jù)被計(jì)算機(jī)軟件所記錄,最終獲得一個(gè)包含了影像信息和光譜信息的三維數(shù)據(jù)立方體。其結(jié)構(gòu)示意如圖4所示。

圖4  GaiaSorter “蓋亞”高光譜分選儀結(jié)構(gòu)示意圖

高光譜儀配置:鏡頭:22mm鍍膜消色差鏡頭;光譜范圍:400nm-1000nm,光譜分辨率: 4nm@435.8nm(@400-1000nm),像面尺寸(光譜x空間):6.15 x 14.2 mm,相對(duì)孔徑:F/2.4,狹縫長(zhǎng)度14.2 mm.

SpecView軟件:控制完成自動(dòng)曝光、自動(dòng)對(duì)焦、自動(dòng)掃描速度匹配;數(shù)據(jù)處理:黑白、輻射度、均勻性、鏡頭等校準(zhǔn);光譜查看。

圖5為成像高光譜的拍攝手臂正反面的真彩色合成圖像。

       

圖5 基于成像高光譜手臂正反面的真彩色合成圖像 (640 nm、550 nm、460 nm)

對(duì)成像高光譜儀拍攝的手臂原始影像數(shù)據(jù)進(jìn)行數(shù)據(jù)的預(yù)處理,預(yù)處理過(guò)程主要包括兩部分。第一部分是輻射定標(biāo);第二部分為噪聲去除。

首先進(jìn)行輻射定標(biāo)。輻射定標(biāo)的計(jì)算公式如1所示。

                        (1)

其中,Reftarget為目標(biāo)物的反射率,Refpanel為標(biāo)準(zhǔn)參考板的反射率,DNtarget為原始影像中目標(biāo)物的的數(shù)值,DNpanel為原始影像中標(biāo)準(zhǔn)參考板的數(shù)值,DNdark為成像光譜儀系統(tǒng)誤差。

其次是噪聲去除,本文運(yùn)用國(guó)外較為常用的最小噪聲分離方法(Minimum Noise Fraction Rotation, MNF)進(jìn)行噪聲去除。最小噪聲分離工具用于判定圖像數(shù)據(jù)內(nèi)在的維數(shù)(即波段數(shù)),分離數(shù)據(jù)中的噪聲,減少隨后處理中的計(jì)算需求量。MNF本質(zhì)上是兩次層疊的主成分變換。第一次變換(基于估計(jì)的噪聲協(xié)方差矩陣)用于分離和重新調(diào)節(jié)數(shù)據(jù)中的噪聲,這步操作使變換后的噪聲數(shù)據(jù)只有最小的方差且沒(méi)有波段間的相關(guān)。第二步是對(duì)噪聲白化數(shù)據(jù)(Noise-whitened)的標(biāo)準(zhǔn)主成分變換。為了進(jìn)一步進(jìn)行波譜處理,通過(guò)檢查最終特征值和相關(guān)圖像來(lái)判定數(shù)據(jù)的內(nèi)在維數(shù)。數(shù)據(jù)空間可被分為兩部分:一部分與較大特征值和相對(duì)應(yīng)的特征圖像相關(guān),其余部分與近似相同的特征值以及噪聲占主導(dǎo)地位的圖像相關(guān)。圖6為MNF降噪前后的光譜反射率變化。

圖6  MNF降噪前后的光譜反射率變化

對(duì)原始數(shù)據(jù)進(jìn)行預(yù)處理之后,分別分析手臂正反面皮膚與手臂靜脈的光譜反射率差異,如圖7所示。

圖7  手臂正反面皮膚與手臂靜脈的光譜反射率差異

利用SpecView軟件的Analysis-Animate功能,快速瀏覽能識(shí)別手臂靜脈的波段,結(jié)果表明能識(shí)別手臂靜脈的波段主要集中在近紅外區(qū)間,這與目前國(guó)內(nèi)外的研究結(jié)果相同。為了較為清晰地看到靜脈血管,本文對(duì)近紅外波段的進(jìn)行均衡化處理。均衡化是圖像處理領(lǐng)域中利用圖像直方圖對(duì)對(duì)比度進(jìn)行調(diào)整的方法,其“中心思想”是把原始圖像的灰度直方圖從比較集中的某個(gè)灰度區(qū)間變成在全部灰度范圍內(nèi)的均勻分布。圖8為手臂正面780 nm的灰度圖與經(jīng)均衡化處理后直方圖。

            

圖8   手臂正面780 nm處均衡化處理前(左)后(右)的灰度圖

為了客觀地識(shí)別手臂上的靜脈,對(duì)經(jīng)預(yù)處理后的高光譜數(shù)據(jù)進(jìn)行主成分分析(Principal Component Analysis, PCA),去除波段之間的多余信息、將多波段的圖像信息壓縮到比原波段更有效的少數(shù)幾個(gè)轉(zhuǎn)換波段下。圖9為手臂正反面經(jīng)PCA變換后的前6個(gè)主成分。

圖9  手臂正反兩面PCA處理后的前6個(gè)主成分

為了更客觀真實(shí)地識(shí)別出手臂靜脈,根據(jù)波段組合的特點(diǎn),對(duì)PCA前六個(gè)主成分組合成各種假彩色圖像,如圖10為手臂正面的假彩色合成圖像,圖11為手臂反面的假彩色合成圖像。與灰度圖相比,假彩色合成更能直觀地識(shí)別出手臂靜脈。

       

圖10     手臂正面PCA假彩色合成圖像

    

圖11     手臂反面PCA假彩色合成圖像